Role of Ca2+ and protein kinase C in shear stress-induced actin depolymerization and endothelin 1 gene expression.
نویسندگان
چکیده
Vascular endothelial cells adapt to changes in blood flow by altering the cell architecture and by producing various substances. We have previously reported that low shear stress induces endothelin 1 (ET-1) expression in endothelial cells and that this induction is mediated by depolymerization of actin fiber. In the present study, we examined the role of Ca2+ and protein kinase C (PKC) in shear stress-induced actin depolymerization and subsequent ET-1 gene expression. Exposure of cultured porcine aortic endothelial cells to low shear stress (5 dyne/cm2) for 3 hours increased the ratio of G-actin to total actin from 54 +/- 0.8% to 80 +/- 1.0%. This shear stress-induced actin depolymerization was completely blocked by chelation of extracellular Ca2+ with EGTA and partially inhibited by intracellular Ca2+ chelation with the tetraacetoxymethyl ester of BAPTA (BAPTA/AM). Pretreatment with staurosporine, a PKC inhibitor, or desensitization of PKC by treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) for 24 hours also resulted in partial inhibition of shear stress-induced actin depolymerization. Although PKC activation by TPA mildly increased G-actin content, the effect of TPA and shear stress on actin depolymerization was not additive. Moreover, shear stress-induced ET-1 gene expression was inhibited by EGTA, BAPTA/AM, and staurosporine to a degree similar to the inhibition of actin depolymerization. In contrast, ET-1 gene expression induced by cytochalasin B, an actin-disrupting agent, was not affected by staurosporine.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy
Objective(s): The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...
متن کاملBioinformatic and empirical analysis of a gene encoding serine/threonine protein kinase regulated in response to chemical and biological fertilizers in two maize (Zea mays L.) cultivars
Molecular structure of a gene, ZmSTPK1, encoding a serine/threonine protein kinase in maize was analyzed by bioinformatic tool and its expression pattern was studied under chemical biological fertilizers. Bioinformatic analysis cleared that ZmSTPK1 is located on chromosome 10, from position 141015332 to 141017582. The full genomic sequence of the gene is 2251 bp in length and includes 2 exons. ...
متن کاملMorphine-induced analgesic tolerance is associated with alteration of protein kinase Cγ and transient receptor potential vanilloid type 1 genes expression in rat lumbosacral cord and midbrain
Introduction: Transient receptor potential vanilloid type 1 (TRPV1) and protein kinase Cγ (PKCγ) are involved in sensitization/desensitization to noxious stimuli. We aimed to examine the gene expression levels of TRPV1 and PKCγ in rat lumbosacral cord and midbrain on days 1, 4 and 8 of induction of morphine analgesic tolerance. Methods: Two groups of male Wistar rats received ...
متن کاملCultured Porcine Aortic Endothelial Cells
Hemodynamic shear stress alters the architecture and functions of vascular endothelial cells. We have previously shown that the synthesis of endothelin-1 (ET-1 ) in endothelial cells is increased by exposure to shear stress. Here we examined whether shear stress-induced alterations in cytoskeletal structures are responsible for increases in ET-1 synthesis in cultured porcine aortic endothelial ...
متن کاملRole of Oxidative Stress in Modulating Unfolded Protein Response Activity in Chronic Myeloid Leukemia Cell Line
Background: Recently, it has been revealed that tyrosine kinase inhibitors (TKIs) act through inducing both oxidative and endoplasmic reticulum (ER) stress in chronic myeloid leukemia cells. However, ER stress signaling triggers both apoptotic and survival processes within cells. Nevertheless, mechanisms by which TKIs avoid the pro-survival effects are not clear. The aim of this study was to ev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 75 4 شماره
صفحات -
تاریخ انتشار 1994